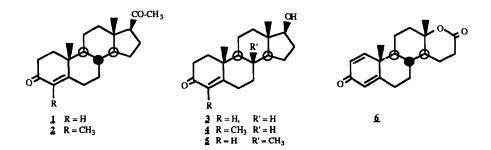
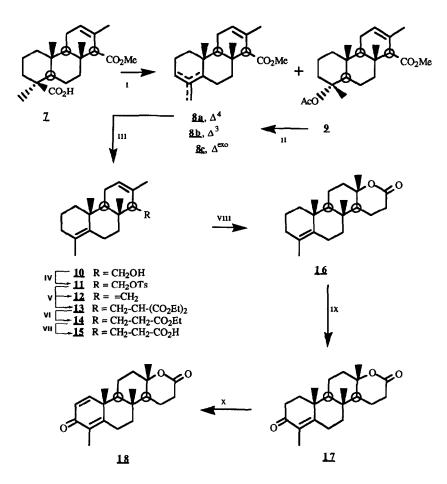
SYNTHESIS OF (-) 4,8β-DIMETHYL TESTOLACTONE FROM (+) 0-15-METHYL ISOAGATHATE


A Fernández Mateos*, O Ferrero Barrueco, J de Pascual Teresa, and R Rubio González Dpto Química Orgánica, Facultad de C Químicas, Plaza de los Caidos 1-5, 37008 Salamanca, Spain

(Received in UK 11 February 1991)

Abstract - The stereoselective synthesis of (-) $4,8\beta$ -dimethyl testolactone **18** from (+) O-15-methyl isoagathate **7** is described. The construction of ring D by stereoselective electrophilic cyclization and the appropriate functionalization of the A-ring were carried out in a nine-step process with a good overall yield.


The methylation of steroids in many instances has been shown to enhance or prolong their biological activity, and in some cases to diminish undesirable side effects¹ 4-Methyl progesterone 2^2 or 4-methyl testosterone 4^3 , which are more active than progesterone 1 and testosterone 3, respectively, and the useful anabolic 8 β -methyl testosterone 5^4 , are examples of evident interest.

Whilst 4-methyl steroids are easily available by direct alkylation, 8β -methyl steroids are a relatively unknown type of compound⁵, probably due to the difficulties encountered in the alkylation at the C-8 position of the steroid nucleus Proof of this fact is the lack of reports about general methods of their synthesis⁶

Prompted by this situation and by an early report of Baran⁷ to the effect that testolactone $\underline{6}$ exhibits anabolic properties and objective regression in the breast cancer of some patients, we embarked on a programme of the synthesis of methyl testolactones

Our specific target was 4,8 β -methyl testolactone **18**. As the starting material we selected O-15-methyl isoagathate Z, an inexpensive and readily available starting material. The structure and situation of the functional groups makes compound Z an ideal substrate for its conversion into 4,8 β -methyl testolactone. To accomplish this transformation, the following operations are required (1) Elimination of the carboxylic group at C-4, (2) elongation of the side chain, (3) construction of ring D, and (4) functionalization of ring A

1, LTA, benzene-pyr, 11, 220 °C, 111, L1AlH₄, Et₂O, 1v, p-TCl, pyr, v, diethyl malonate, Na, toluene, v1, NaCl, aq DMSO, v11, KOH aq, EtOH, v111, BF₃ Et₂O, benzene, 1x, Na₂CrO₄, AcOH-Ac₂O, x, ScO₂, AcOH-t-BuOH

The first step was done by oxidative decarboxylation of acid $\underline{7}$ with lead tetra-acetate (LTA) in benzenepyridine at reflux for 4 h which gave a 35.25 40 mixture of the unsaturated esters <u>8a-c</u> (50 %) and the diester $\underline{9}$ (25 %) Pyrolysis of $\underline{9}$ afforded a 1 2:3 mixture of the unsaturated esters <u>8a-c</u> in quantitative yield

Treatment of the whole mixture of <u>8a-c</u> with iodine in benzene at reflux for 3 h gave only the unsaturated ester <u>8a</u> Isomerization of the Δ^3 and Δ^{exo} -double bonds induced by iodine⁸ occurs with remarkable chemoselectivity as observed in the experimental result, the Δ^{13} -double bond remain unaffected

Elongation and selective funcionalization of the side chain of <u>8a</u> was done by the following chemical transformations Reduction of <u>8a</u> with $LiAlH_4$ in diethyl ether gave the alcohol <u>10</u>, which by tosylation followed by condensation of the tosylester <u>11</u> with sodium diethyl malonate in refluxing toluene afforded a mixture of the diester <u>13</u> and the triene <u>12</u> Deethoxycarbonylation of diester <u>13</u> was carried out with a mixture of sodium chloride, dimethyl sulfoxide and water at 180 °C Hydrolysis of the ester <u>14</u> carried out with potassium hydroxide in ethanol-water followed by addition of hydrochloric acid gave the unsaturated acid <u>15</u> in 62 % overall yield from ester <u>8a</u>

Construction of ring D was achieved by electrophilic cyclization induced by Lewis acid⁹ Thus, the reaction of 15 with boron trifluoride diethyl ether in benzene at room temperature afforded stereospecifically the δ -lactone 16 in 90 % yield

The axial position of the methyl group bonded to the newly created chiral centre at C-13 and also the trans ring C/D fusion was demostrated by the signal at δ_C 22 87 ppm This displacement value rules out the C-13 epimer in which the attached methyl group in a equatorial position will appear at a lower field⁵.

The two last steps in our synthesis concerned the appropriate modification of the A-ring Allylic oxidation around the Δ^4 -double bond of compound **16** was smooth and selectively carried out with anhydrous sodium chromate¹⁰ at 50 °C for 18 h, in 71 % yield, to afford **17** The existence of the enone system was shown by an 1 r absortion at 1680 cm⁻¹, together with the presence of three signal at 186 89, 129 04 and 162 17 ppm in the ¹³C nmr spectrum assigned to C-3, C-4 and C-5 respectively, and a singlet signal at δ 1 43 ppm in the ¹H n m r of the methyl group bonded to C-4 Dehydrogenation of **17** was selectively performed by treatment with selenium dioxide¹¹ in acetic acid/t-butanol at reflux for 20 h, to give the target dienone **18** in 45 % yield The position of the newly created double bond has been based on the spectral ¹³C n m r data The signal at δ_C 184 84 ppm assigned to C=O (C-3) rules out the isomer Δ^6 for which it would appear at a lower field¹²

EXPERIMENTAL

General - Mps were determined on a Kofler hot-stage apparatus and are uncorrected I r spectra were recorded on a Beckman 33-IR spectrophotometer, film ¹H n m r (200 MHz) and ¹³C n.m r (50 MHz) spectra were recorded on a Bruker WP-200-SY spectrometer Spectra were measured in deuteriochloroform Chemical shifts are given in ppm downfield from Tetramethylsilane Chemical shifts and coupling constants

were obtained from a first-order analysis of the spectra Optical rotations were measured on a digital Perkin Elmer 241 polarimeter in a 1-dm cell Mass spectra were measured on a VG TS-250 apparatus Microanalyses were performed using a Carlo Erba 1106 elemental analyser

Solvents were distilled before use and were dried, as necessary, by literature procedures Work-up of solutions involved evaporation under reduced pressure at below 40 °C Reactions were carried out under nitrogen Silicagel for column chromatography refers to Merck Kieselgel 60

Oxidative decarboxylation of methyl 15-isoagathate $\underline{7}$ - A mixture of the ester acid $\underline{7}$ (12g, 34 5 mmol), dry benzene (1100 ml), pyridine (25 ml) and freshly crystallized lead tetra acetate (22 g, 50 mmol) was sturred at reflux for 4 h The cooled mixture was filtered and the filtrate was washed consecutively with 2N hydrochloric acid, aqueous sodium hydrogen carbonate and brine, dried (Na₂SO₄) and concentrated to yield a yellow oil which was cromatographed (10 % light petroleum-ether) to give a fraction of olefinic esters <u>8a-c</u> (5 2 g, 50 %), whose ¹H n m r spectrum indicated the presence of 35% of <u>8b</u> and 40% of <u>8c</u>

Further elution (20 % light petroleum-ether) gave methyl ent-4-acetoxy-19-norisocopal-12-en-15-oate **2** (3 1 g, 25 %) as a colourless oil, 1 r v_{max} (film) 1730, 1450, 1250 cm⁻¹, n m r $\delta_{\rm H}$ 0 98 (s, 6H), 1 42 (s, 3H), 1 60 (s, 3H), 1 90 (s, 3H), 2 85 (br s, 1H), 3 60 (s, 3H), 5 42 (br s, 1H) Anal Calcd for C₂₂H₃₄O₄, C 72 92, H 9 39 Found, C 72 94, H 9 41

Pyrolysis of methyl ent-4-acetoxy-19-norisocopal-12-en-15-oate 2 - The acetate ester **2** (3 1g, 8 5 mmol) was heated at 220 °C under reduce pressure for 25 min The residue was cooled and extracted with ether The organic layer was washed with aqueous 5 % NaHCO₃ and with water, dried (Na₂SO₄) and evaporated Chromatography of the residue gave the olefinic ester mixture <u>**Ba-c**</u> (2 5 g, 98 %)

Methyl ent-19-norisocopal-4,12-dien-15-oate <u>8a</u> - A solution of the olefinic esters mixture <u>8a-c</u> (6 5 g, 21 5 mmol) in dry benzene (650 ml) was heated under reflux with iodine (245 mg, 1 mmol) for 3 h, and the isomerization was quenched by cooling and washing with sodium thiosulphate solution and saturated sodium chloride solution, dried (Na₂SO₄) and evaporated Chromatography of the residue (10 % light petroleumether) gave the unsaturated ester <u>8a</u> (6 3 g, 97 %) as a yellow oil, $[\alpha]_D^{20}$ +18 7 (c 0 72, CHCl₃), 1 r ν_{max} (film) 1760, 1465, 1260, 840 cm⁻¹, n m r δ_H 0 96 (s, 3H), 1 00 (s, 3H), 1 53 (s, 3H), 1 55 (s, 3H), 3 60 (s, 3H), 5 47 (br s, 1H) Anal Calcd for C₂₀H₃₀O₂, C 79 47, H 9 93 Found, C⁻ 79 51, H 9 81

Ent 19-norisocopal-4,12-dien-15-ol 10 - A solution of 8a (5 5 g, 18 mmol) in anhydrous ether (80 ml) was gradually added to a stirred mixture of lithium aluminium hydride (1 4 g, 35 5 mmol) in anhydrous ether (20 ml) at room temperature After 5 1/2 h of stirring, the reaction mixture was carefully quenched with water and the solution was acidified with 2N H₂SO₄ The mixture was extracted with ether and the extract was washed with brine, dried (Na₂SO₄) and evaporated to give the crystalline compound 2 (4 8 g, 91 %), mp 117 °C, $[\alpha]_D^{20}$ +78 2 (c 1 52, CHCl₃), 1 r v_{max} (film) 3386, 2940, 2860, 1050, 850 cm⁻¹, n m r δ_H 0.96 (s,

3H), 1 01 (s, 3H), 1 61 (s, 3H), 1 76 (s, 3H), 3 72 (dd, 1H, J 11 Hz and J 5 Hz), 3 85 (dd, 1H, J 11 Hz and J 3 5 Hz), 5.51 (br s, 1H). Anal Calcd for $C_{19}H_{30}O$, C 83 21, H: 10 95 Found, C. 83 33, H 10 83

Tosylate of ent 19-norisocopal-4,12-dien-15-ol 10 - P-toluenesulfonyl chloride (4 0 g, 20 mmol) was added to a solution of 10 (4 5 g, 16 4 mmol) in pyridine (95 5 ml) and the mixture was stirred until all the p-toluenesulfonyl chloride had dissolved. The reaction mixture was allowed to stand at 0 °C for four days Icewater (250 ml) was added to afford a solution which was extracted with ether. The organic layer was washed with 2N HCl, and brine, dried (Na₂SO₄) and evaporated to give the corresponding tosylate 11 (6 9 g, 98 %), 1 r v_{max} (film) 1610, 1500, 1450 cm⁻¹

Preparation of ent 15-(ethoxycarbonyl-methyl)-19-norisocopal-4,12-diene 14 -

a) <u>Condensation of the tosylate 11 with diethyl sodiomalonate</u> - A solution of <u>11</u> (6 4 g, 14 9 mmol) in toluene (50 ml) was added to a solution of the diethyl sodiomalonate, prepared by refluxing toluene (62 ml), sodium (1 4 g, 62 mmol) and diethyl malonate (10 5 g, 66 5 mmol) Refluxing was continued for 23 h, the solution was cooled and the precipitated sodium toluene-p-sulfphonate was filtered off, washed with toluene, and the combined toluene extracts were evaporated The oil obtained was dissolved in ether and washed with water, and the solution was dried (Na₂SO₄) and evaporated to afford 12 1 g of crude product

b) Deethoxycarbonylation of the malonate ester - The crude product obtained in the preceding reaction (12 1 g), sodium chloride (6 5 g, 113 mmol) and water (2g, 113 mmol) in DMSO (60 ml) were heated at 180 °C for 20 h The reaction mixture was cooled and diluted with ethyl acetate (800 ml), this solution was washed with brine, dried (Na₂SO₄), filtered and evaporated The residue was chromatographed (light petroleum) to give ent 19-norisocopal-4,12,14-triene **12** (0 72 g, 19 %), as a crystalline solid, mp 95 °C, $[\alpha]_D^{20}$ +72 87 (c 1 88, CHCl₃), 1 r v_{max} (film) 1610, 1450, 1230, 890 cm⁻¹, n.m r δ_H 1 07 (s, 3H), 1 09 (s, 3H), 1 64 (s, 3H), 1 79 (s, 3H), 4 79 (s, 1H), 4 80 (s, 1H), 5 66 (br s, 1H)

Further elution (5 % light petroleum-ether) gave the unsaturated ester **14** (3 8 g, 75 %) as a yellow oil, $[\alpha]_D^{20}$ +47 92 (c 1 64, CHCl₃), 1r v_{max} (film) 1760, 1480, 1280, 1050 cm⁻¹, n m r δ_H 0 87 (s, 3H), 0 99 (s, 3H), 1 24 (t, 3H, J 7 Hz), 1 60 (s, 3H), 1 67 (s, 3H), 4 11 (c, 2H, J 7 Hz), 5 58 (br s, 1H) Anal Calcd for C₂₃H₃₆O₂, C 80 23, H 10 46 Found, C 80 31, H 10 53

Ent 15-(carboxy-methyl)-19-norisocopal-4,12-diene 15 - The unsaturated ester 14 (1g, 2 9 mmol) was refluxed for 23 h in ethanol (25 mll) and water (2 ml) containing potassium hydroxide (0 4 g, 7 5 mmol) After cooling and removing the solvent, the residual solid was dissolved in water and the solution was extracted with ether The extract was washed with brine, dried (Na₂SO₄) and evaporated to afford the title compound 15 (0 85 g, 93 %) as a colourless oil, $[\alpha]_D^{20}$ +45 04 (c 1 13, CHCl₃), 1r ν_{max} 3400-2900, 1720, 1470, 1290 cm⁻¹, n m r δ_H 0 86 (s, 3H), 0 99 (s, 3H), 1 60 (s, 3H), 1 66 (s, 3H), 5 40 (br s, 1H) Anal Calcd for C₂₁H₃₂O₂, C 79 75, H 10 12 Found, C 79 79, H 10 13

D-homo-17a-oxa-4,8β-dimethyl-androst-4-en-17-one 16 - Boron trifluoride etherate (0 5 ml) was gradually added to a solution of **15** (0 5 g, 1 5 mmol) in dry benzene (75 ml) and the reaction mixture was stirred at room temperature for 5 h Water (200 ml) was added and the water layer was extracted with ether The combined organic extracts were washed with brine, dried (Na₂SO₄) and concentrated to give the title compound **16** (0 45 g, 90 %) as a crystalline solid,mp 148 °C, $[\alpha]_D^{20}$ +27 6 (c 0 77, CHCl₃), 1 r ν_{max} (film) 1740 cm⁻¹, n m r δ_H 0 94 (s, 3H), 0 96 (s, 3H), 1 40 (s, 3H), 1 62 (s, 3H) Anal Calcd for C₂₁H₃₂O₂, C 79 75, H 10 12 Found, C 79 81, H 10 11

D-homo-17a-oxa-4,8β-dimethyl-androst-4-ene-3,17-dione <u>17</u> - Unsaturated lactone <u>16</u> (213 mg, 0 67 mmol) in benzene (1 1 ml), acetic acid (1 ml) and acetic anhydride (1 ml) was warmed to 40 °C and anhydrous sodium chromate (184 mg) was added The mixture was stirred for 18 h at 50 °C after which icewater (10 ml) was added The solution was extracted with ether and the organic layer was washed with 10 % aqueous sodium carbonate and saturated sodium chloride solution, dried (Na₂SO₄) and evaporated The residue was chromatographed (80 % light petroleum-ether) to afford compound <u>16</u> (157 mg, 71 %) as a crystalline solid, m p 193 °C, $[\alpha]_D^{20}$ +24 2 (c 1 35, CHCl₃), 1 r v_{max} (film) 1740, 1670, 1620, 980 cm⁻¹, n m r δ_H 1 04 (s, 3H), 1 12 (s, 3H), 1 43 (s, 3H), 1 79 (s, 3H) Anal Calcd for C₂₁H₃₀O₃, C 76 36, H 9 09 Found, C 76 41, H 9 09

D-homo-17a oxa-4,8β-dimethyl-androstan-1,4-diene-3,17-dione 18 - A mixture of 17 (120 mg, 0 36 mmol), selenium dioxide (192 mg), acetic acid (0 08 ml), and t-butyl alcohol (8 5 ml), was refluxed for 20 h The resultant mixture was concentrated to half the volumen, diluted with water and extracted with ether The combined extracts were washed with 5 % bicarbonate solution and brine, dried (Na₂SO₄), and evaporated Chromatography of the residue (10 % light petroleum-ether) gave the title compound 17 (55 mg, 45 %) as a crystalline solid, mp 182 °C, $[\alpha]_D^{20}$ -48 7 (c 0 77, CHCl₃), 1 r ν_{max} (film) 1740, 1680, 1640, 1620, 990 cm⁻¹, n m r δ_H 1 10 (s, 3H), 1 17 (s, 3H), 1 42 (s, 3H), 1 92 (s, 3H), 6 20 (d, 1H, J 10 Hz), 7 03 (d, 1H, J 10 Hz) Anal Calcd for C₂₁H₂₈O₃, C 76 83, H 8 53 Found, C 76 89, H 8 63

Table I
13C Chemical Shifts

	(8a)	(9)	(14)	(15)	(16)	(17)	(18)
C-1	39 17	39 28	39 24	39 2	39 87	36 34	154 42
C-2	21 73	21 83	21 88	21 9 1	21 37	33 25	128 98
C-3	32.53	32 58	32 61	32 64	32 79	186 89	184 84
C-4	1 23 95	123 43	123 24	123 40	124 68	129 04	125 91
C-5	136 02	136 43	136 66	136 61	135 55	1 62 17	160 77
C-6	18 67	18 72	18 82	18 84	18 69	23 96	23 85
C-7	40 79	40 43	39 88	39 86	39 10	38 85	40 70
C-8	36 28	36 10	36 92	36 95	37 32	37 11	40 64
C-9	53 14	53 71	53 90	53 88	53 72	53 63	53 17
C-10	37 50	37 54	37 59	37 61	37 83	39 27	43 25
C-11	23 52	23 45	23 68	23 71	15 84	16 03	15 99
C-12	123 95	123 78	123 00	123 15	41 33	41 18	40 78
C-13	129 04	132 79	134 22	134 02	83 48	83 12	82 60
C-14	61 98	57 29	54 24	54 22	59 16	58 49	55 18
C-15	172 86	60 70	22 25	22 07	19 50	19 16	20 36
C-16			36 15	35 99	29 00	29 03	28 54
C-17			173 40	180 06	171 35	171 18	170 64
C-18	20 99	21 63	21 88	21 91	22 87	23 01	22 83
C-19	20 75	20 91	20 81	20 83	19 60	18 16	20 47
CH ₃ (C-4)	19 26	19 27	19 27	19 36	20 55	11 22	10 43
CH ₃ (C-8)	14 74	14 79	14 17	13 62	15 13	15 06	15 42
CH ₃ O-	50 66						
CH ₂ O-			60 01				
CH ₃ -(CH ₂ O)-			13 58				

REFERENCES

- 1 Wolff, M E, "Burger's Medicinal Chemistry", Wiley, New York, 1977, part II, p 873
- 2-Sondheimer, F, Mazur, Y J Am Chem Soc 1957, 79, 2906
- 3-Atwater, N W J Am Chem Soc 1960, 82, 2847
- 4-Nagata, W, Tomita, T, Itazaki, H Japan 3166/1907 (Chem Abstr 1967, 67, 32889w)
- 5 Fernández Mateos, A, Pascual Teresa, J, Rubio González, R J Chem Soc Perkin Trans I 1990, 2429 Nagata, W Proc Int Symp Drug Res 1967, 188-205
- 6-France, D J, Hand, J J, Los, M Tetrahedron 1969, 25, 4011, J Org Chem 1970, 35, 468
 Hand, J J, Los, M Chem Commun 1969, 673 Sakai, K, Ameniya, S Chem Pharm Bull
 1970, 18, 641. Pietrasanta, Y, Pucci, B Tetrahedron Lett 1974, 1901 Bondon, D, Pietrasanta, Y, Pucci, B Tetrahedron Lett 1977, 821 Bondon, D, Pucci, B C R Acad Sc Paris 1979, 288
- 7-Baran, J S J Org Chem 1965, 30, 3564
- 8-Cambie, R C, Grigor, B A, Hayward, R A, Nielson, A J Aust J Chem 1974, 27, 2017
- 9 Guenzet, J, Camps, M Bull Soc Chim France 1973, 3167; Tetrahedron 1974, 30, 849
- 10 Atwater, N W Am Soc 1961, 83, 3071
- 11 -Heller, M, Bernstein, S J Org 1961, 26, 3876
- 12 -Wehrly, F W, Nishida, T Prog Chem Org Nat Prod 1979, 112